Preliminary Experiments for Power Supply Noise Reduction using Stubs

Toru Nakura[#], Makoto Ikeda*, Kunihiro Asada*

#Dept. of Electronic Engineering,
*VLSI Design and Education Center,
University of Tokyo, Tokyo, Japan

Aug. 5, 2004 Asia-Pacific Conference on Advanced System Integrated Circuits

Background – di/dt and SI

- Power supply noise : L(di/dt)
- EMI noise : caused by di/dt
- Substrate noise : related to power noise

Background – Decoupling Cap.

- Decoupling capacitors
 - On-chip capacitor: area penalty
 - Off-chip capacitor: parasitic inductance

Contents

- Stub theorem
- Measurement Setups
- Measurement Results
 - Power supply noise reduction
 - Frequency dependence
- Summary

Waveform in Ideal λ/4 Stub

 The forward- and backward-going waves are cancelled on λ/4 stub

Power Supply Noise Reduction

- Attach the stub to the power line will reduce the power supply noise
- $\lambda/4 < 1.5$ cm at 2.5GHz, use off-chip stub

Off-chip Stubs

Internal Circuit as Noise Source

Chip Photograph

- 0.18um 5ML standard CMOS
- 2mm x 0.5mm

Schematic

Spectrum @1.15GHz Repeat

Spectrum @1.15GHz Random

Spectrum of Lower Frequency

PRBS 2^7-1 characteristics

Waveforms @1.15GHz Random

• Noise amplitude is evaluated by σ

Voltage [V]

Time [ns]

Off-chip Stubs

Freq. Dependence @1.15GHz

Freq. Dependence @1.25GHz

Freq. Dependence @1.80GHz

Freq. Dependence @1.85GHz

Noise of the fop Component

Freq. Dependence @1.15GHz

Total Noise Amplitude (σ)

Noise Amplitude (တ) [V]

Possibility of On-chip Stub

ITRS 2002 Roadmap

Summary

- Power supply noise reduction using offchip stubs are demonstrated.
- Noise reduction is clearly observed.

 90% and 84% of the operating frequency component, 48% and 15% of total noise is suppressed by 1.15GHz and 1.8GHz stubs

Stub frequency dependence is observed

 On-chip stub integration will be possible in the near future

Stub Theorem

- Input impedance of the transmission line of Z0, β , I, and ZL termination : $Zstub = Z_0 \frac{ZL \cos\beta I + ZO \sin\beta I}{ZO \cos\beta I + ZL \sin\beta I}$
- When open termination (ZL=infty) $Zstub = Zo \frac{cos\beta I}{j \sin\beta I}$
- When the line length is quarter of the wavelength (βl=π/2), no loss (R=G=0)
 Zstub = 0

Chip Photograph

0.18um 5ML standard CMOS

Freq. Dependence @1.45GHz

