スタブを用いた電源安定化手法 Power Supply Noise Reduction using Stubs

名倉 徹#, 池田 誠*, 浅田 邦博*

#東京大学大学院工学系研究科 *東京大学大規模集積システム設計教育 研究センター (VDEC)

2003 デザインガイア

di/dtの影響

– 低電圧 LSI での L(di/dt) ノイズ – 高速 LSI での EMI ノイズ

di/dt を抑える必要有り

<u>従来の di/dt 低減手法</u>

非同期・準同期回路

 - 設計の複雑化

 PCBボード上の電源系のインダクタンス化

 - 設計の複雑化

- スタブ理論と設計
- シミュレーション結果
- スタブ技術の将来予測
- 結論

Z0, β, I, ZL 終端の伝送線路の入力インピー
 ダンス:

$Zstub = ZO \frac{ZL \cos\beta I + ZO \sin\beta I}{ZO \cos\beta I + ZL \sin\beta I}$

- 開放終端の場合 (ZL=infty)
 Zstub = Zo <u>cosβ/</u>
 j sin β/
 j sin β/
- スタブ長が信号波長の1/4 (βl=π/2) で, 減衰のない場合 (R=G=0)
 Zstub = 0

<u>スタブによる電源ノイズ低減</u>

- Zstub = 0 → C=infty と等価
- スタブを電源線に接続することでノイズ低減が 可能である

• 電圧の前進波と後進波が近端で打ち消しあう

<u>スタブによる電源ノイズ低減</u>

- Zstub = 0 → C=infty と等価
- スタブを電源線に接続することでノイズ低減が 可能である

抵抗の影響

スタブの抵抗成分により、ノイズは完全には打ち消しあわない
 – 周回減衰係数 η=e^{-α21}

<u>スタブ設計</u>

- スタブ長:動作周波数波長の 1/4
 スタブ入力インピーダンスは周波数依存を持つ
 動作周波数が電源ノイズの主成分
 スタブ幅: ノイズ低減には広い方が望ましい
 低抵抗, (大容量)
- ・本研究の目的
 - スタブと同一面積でカップリング容量とのノイズの差 を明確にする

<u>スタブ・同一面積デカップリング容量</u>

- H社 0.18um 5M CMOS
- 2.5GHz 動作 LSI 向け

スタブ入力インピーダンスvs周波数

Test Circuit

<u>電源ノイズスペクトル</u>

遠端での電圧振幅

The voltage swing at far end is bigger

$$(0) (4T/8) (8T/8) (9T/8) (7T/8) (9T/8) (9T/8) (9T/8) (9T/8) (10T/8) (11T/8) (11T/8)$$

<u>遠端電圧波形</u>

<u>遠端電圧のスペクトル</u>

スタブ効果の将来予測

- スタブを用いることで、1.8V 2.5GHz テスト回路において、無付加に比べて48%、同一面積容量に比べて26%のdi/dt ノイズを削減することができた
- スタブ技術は、将来の高速動作LSIにおいて、 より効果的であることを示した

ETA: Simulation Technique

RLC ladder

- Divide the stub into multiple sections
 x Un-realistic LC oscillation
 x More simulation time
- W element
 - If you have a recent version of HSPICE
- ETA with ideal transmission line

 Require an ideal transmission line element
 o 13% faster simulation time
 x Error if the stub resistance become big

Parameters of our Stub

- R= 500Ω/m, L=102nH/m, C=407pF/m, G=0
 [Z0]=16.22Ω, arg(Z)=-8.6deg, α=-15.6/m
- For 2.5GHz stub: L=15.323mm, η=0.62, |Zstub|=3.8Ω, • For 5.0GHz stub: L=7.662 mm, η=0.78, |Zstub|=1.9Ω, • $Cp = 407pF/m \times (15.323+7.662mm)$ $= 9.4 \text{pF} (|Zp| = 1/\omega \text{C} = 6.8 \Omega @ 2.5 \text{GHz})$

Parameters of our Stub (2)

- R=500W/m, L=102nH/m, C=407pF/m, G=0
- |Z0|=16.22Ω, arg(Z)=-8.6deg, α=-15.6/m
- For 2.5GHz stub: |Zstub|=3.8Ω
 L=15.323mm, η=0.62, ZιEquiv = 67.6Ω
 Vfar/Vnear=-4.26j, τ =557ps
- For 5.0GHz stub: |Zstub|=1.9Ω
 - L=7.662 mm, η=0.78, ZIEquiv = 131.0Ω
 - **Vfar/Vnear=-8.27j**, *τ* **=603ps**
- $Cp = 9.4pF (|Zp|=1/\omega C=6.8\Omega)$

Waveforms using LCR/ETA

ETA: Voltage at Near/Far End

• The voltage ratio of the near and far end terminal is expressed as:

$$\frac{V far}{V near} = -j \frac{1+\eta}{1-\eta}$$

if ETA is used

• The ratio is 4.26, 8.27 for 2.5GHz, 5GHz stubs in our test case

The difference comes from non-*nf*₀ components

ETA: Time Constant

• At the initial state, stub input impedance is the same as the system impedance

 τ =557ps/603ps for 2.5GHz/5GHz stubs in our test case

Frequency Components

Power Line Noise Spectrum

Stub Optimization Step

 Sweep the stub width, calculate Zin and Zcap, probe the virtualVdd node

Lump or Distributed Element?

 Signal propagation time through a wire, compared with the cycle time: Negligibly small → lump element (R, C ladder) → distributed element Comparable (transmission line) $Z_0 = \sqrt{\frac{R+j\omega L}{G+j\omega C}}$, length

 $\beta_c = -j\sqrt{(R+j\omega L)(G+j\omega C)} = \beta_r - j\alpha$

Equivalent Termination Approx.

Stub X Direction

Analytical Models using ETA (1)

• The stub input impedance

$$ZstubEquiv = \sqrt{\frac{L}{C}} \frac{1-\eta}{1+\eta}$$

The voltage ratio of the near and far end

$$\frac{V far}{V near} = -j \frac{1+\eta}{1-\eta}$$

Analytical Models using ETA (2)

- Time constant for stub impedance change
 - At the initial state, stub input impedance is the same as the characteristic impedance

