On-chip di/dt Detector Circuit for Power Supply Line

Toru Nakura[#], Makoto Ikeda*, Kunihiro Asada*

#Dept. of Electronic Engineering,
*VLSI Design and Education Center,
University of Tokyo, Tokyo, Japan

IEEE International Conference on Microelectronic Test Structures 2004

Background

- di/dt is becoming a critical issue
 - L(di/dt) noise of low voltage LSIs
 - EMI noise of high-speed operation LSIs
- Need to measure the di/dt

Conventional Current Meas.

- Probe the voltage difference of the R

 Needs numerical calculation
- Probe the magnetic field by pickup coil
 Phase information is lost

Contents

- Introduction of our di/dt detector circuit
 - Mutual Inductor
 - Amplifier
 - Setup for measurement
- Simulation Waveforms
- Summary

Block Diagram

- L2 picks up the di/dt, induce the voltage
- Amplifier amplifies/output the voltage

Advantage

- On-chip
- di/dt waveform without numerical calculation
- Real time
- Feedback di/dt control is possible

Mutual Inductor

Equivalent Circuit

Extracted by FastHenry

Amplifier/Output buffer

Noise Tolerance

- Common mode noise is eliminated
- Vdd noise is suppressed to 14% (by 86%)

Single or Dual?

- Noise immunity, Sensitivity, Symmetric
- Require two pins, numerical calculation

Linearity of the Amplifier

Sensitivity

• L1=0.499nH, L2=14.5nH, K=0.652, G=1.273

Test Circuit

Whole Test Circuit

di/dt Waveform (repeat)

di/dt Waveform (random)

Current Waveforms

Summary

- An on-chip di/dt detector is proposed.
- It consists of a spiral inductor and an amplifier.
- The accuracy is 1.52x10⁷ A/s by an HSPICE simulation (random case).
- Current waveform can be obtained by integration of the di/dt output, with the accuracy of 0.72mA.

