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Introduction
• Power supply voltage will decrease
– Noise margin will be reduced

• Power and currents will increase
– Noise amplitude will be increased

[1] ITRS 2002 Roadmap



Signal Integrity and di/dt
• Power supply noise : L(di/dt)
• EMI noise :            caused by di/dt
• Substrate noise :  related to power noise



Signal Integrity Problems
• Power supply noise
– Timing violation – delay ∝ 1/(Vdd-Vth)
– Logic error

• Substrate noise
– PLL jitter becomes 10 times bigger by the 

substrate noise [20]

• EMI noise
– Operational problems in other devices
– Regulations has been enforced [2]

[20] P. Larsson, JSSC July 2001
[2] VCCI



Improve Signal Integrity
• Reduce the di/dt
• Measure the di/dt
• Use the di/dt for substrate noise 

reduction
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Background – di/dt Reduction –
• Decoupling capacitor
– Area penalty, parasitic inductance

• Attach the stub to the power line will 
reduce the power supply noise



Waveform in Ideal λ/4 Stub
• The forward- and backward-going waves 

are cancelled



Stub and Capacitor Impedance



Boundary Frequency
• Stub input impedance Zstub∝f –2, f –1.5

• Capacitor input impedance Zcap∝f -1

• Boundary frequency at Zstub=Zcap



Numerical Analysis
• Raphael(L,C), Fasthenry(R) vs. the model
• d=5um, t=1um, A=1mm2, εr=3.9, ρ=ρCu



Circuit Simulation
• 0.18um CMOS
• fop=2.5GHz



Power Supply Noise Waveform



Power Supply Noise Spectrum



Short Summary
• Stubs and capacitors are compared for power 

supply noise reduction
• Boundary frequency above which stubs are 

more effective than decoupling capacitors is 
clarified

• Circuit simulation shows that the stub 
reduces 37% and 18% of the power supply 
noise compared with the nothing and the 
capacitor case.

• It is theoretically shown that stubs will have 
more advantage over capacitors for LSIs with 
higher operating frequency
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Off-chip Stubs



On-board Stubs



Schematic



S parameter – |S21|



Internal Circuit



Freq. Dependence @1.25GHz



Freq. Dependence @1.32GHz



Freq. Dependence @1.95GHz



Freq. Dependence @2.00GHz



Noise of the fop Component



Current Measurement



Current Distribution



Possibility of On-chip Stub

ITRS 2002 Roadmap



Short Summary
• Stub noise reduction is experimented
• The on-board stubs show clear noise 

reduction
– 87%, 72% of the operating frequency 

component at 1.25G, 1.95GHz is suppressed
– Stub frequency dependence is observed

• On-chip stub integration will be possible 
in the near future
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Background
• di/dt is becoming a critical issue
• Need to measure the di/dt



Block Diagram
• L2 picks up the di/dt, induce the voltage
• Amplifier amplifies/output the voltage

Pros: on-chip, real time, high-bandwidth,
no numerical calculation



Improved Mutual Inductor
• Straight layout on the primary part



Improved Mutual Inductor
Pros:  L1:0.5nH → 0.26nH, R1:1.56Ω → 0.14Ω
Cons:  M :1.80nH → 0.92nH (use large amp.)



Amplifier/Output buffer
• Gain: 0.76,  fcut-off: 3.3GHz

Output linearly: ±0.35V (simulation)



Bias Points of the Amplifier



Internal Circuit as Noise Source



Whole Circuit / Meas. Setup



Chip Photograph
• 0.35um 3ML 2P CMOS
– Chip area       : 3.0mm x 1.8mm.
– di/dt detector : 340um x 280um



Waveform #1



Waveform #2



Voltage Drop

• Voltage drop is drastically reduced



Short Summary
• On-chip di/dt detector is demonstrated
• It consists of a power supply line, 

underlying spiral inductor, an amplifier
• di/dt waveforms obtained from the di/dt

detector and the resistor agree well
• Current waveform can be calculated by 

integrating the detector output by time
• Improved mutual inductor reduces the 

voltage drop
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Background – Substrate Noise
• Guard ring does not work well because 

of the parasitic impedance
• Substrate noise is related to Gnd noise

[16] M. Takamiya, et al. ISSCC, Feb., 2002



F.F. Active Noise Cancelling
• di/dt detector makes anti-phase signal

no feedback high bandwidth



Noise Canceller
• Anti-phase current should be injected
• Cc is large so as to adjust the phase of 

the original noise and injected currents



Noise Probing for Verification
• Differential amplifier connected to the 

substrate and the external Gnd
• No body contact for NMOS (gm/gbs=6.0)



Internal Circuit as Noise Source



Chip Photograph & Floor Plan
• 0.35um 3ML 2P CMOS (3.0mm x 1.8mm)



Chip Mount
• The test chip is mounted on a Cu board



Waveform (Random@500MHz)



Active Cancel ON/OFF
• ON, OFF means Vdd_Canceller=3.3V, 0V



Waveform (Repeat@500MHz)



Frequency Dependence (repeat)



Noise Amplitude Change

• @500MHz operation, repeat mode



Phasor of the Substrate Noise
• Phase of the injected current is –π/2
• 54% noise reduction would be achieved 

by optimizing the amplifier design



In-phase Current Injection
• In-phase injection increase the noise



In-phase Current Injection

• This result supports our model



Short Summary
• Feedforward active substrate noise 

cancelling technique is demonstrated
• A di/dt detector generates anti-phase 

signals, and injected into the substrate
• Measurement results show that 17% to 

34% of the substrate noise reduction is 
achieved from 100MHz to 600MHz range

• Optimized injector design will enhance 
the noise suppression ratio up to 56%
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Conclusions
• Stubs and capacitors are compared for 

power supply noise reduction
– Boundary frequency is clarified
– Stubs have advantage for high-frequency

• Clear supply noise reduction effects 
were observed with on-board stubs

• On-chip di/dt detector was demonstrated
– on-chip and real time di/dt measurement

• Feedforward active substrate noise 
cancelling was demonstrated
– Use the di/dt detector



Q&A



Future Works (1/4)
• Measure the substrate noise cancelling 

circuit (chip delivery 10/8)



Future Works (2/4)
• Measure an improved di/dt detector

Pros:  L1:0.5nH → 0.26nH, R1:1.56Ω → 0.25Ω
Cons:  M :1.80nH → 0.92nH
– Depend on the delivery date (10/8???)



Future Works (3/4)
• Off-chip stub vs off-chip capacitor
–Write stub and capacitor patterns with the 

same area on PCB



Future Works (4/4)
• Simulate a feedback di/dt control system



Introduction



Power Supply Noise
• As the Vdd decrease, the noise margin 

is reduced
– Timing violation – delay ∝ 1/(Vdd-Vth)
– Logic error

• L(di/dt)+RI causes the noise
– L(di/dt) is dominant in high-speed LSIs
– Decoupling capacitor reduce the di/dt

Requires more die area for on-chip capacitor
Parasitic inductance disturbs for off-chip 
capacitor



Power Supply Noise
• As the Vdd decrease, the noise margin 

is reduced
– Timing violation – delay ∝ 1/(Vdd-Vth)
– Logic error

• L(di/dt)+RI causes the noise
– L(di/dt) is dominant in high-speed LSIs



Substrate Noise
• PLL jitter becomes 10 times bigger by 

the substrate noise [16]
• Coupling from power supply noise is the 

main source di/dt is important

[16] P. Larsson, JSSC July 2001



EMI noise
• EMI radiation can cause operational 

problems in other devices
• EMI radiation occurs from cables, 

connectors, PBC, package ...
• Ultimate noise source is di/dt caused by 

gate switching in LSIs
• EMI radiation is caused by di/dt, not by 

voltage perturbation



Theoretical Study of
Stubs vs Capacitors



Background
• Decoupling capacitor
– Area penalty
– Parasitic

inductance

• Semi-asynchronous architecture
– Complicated design

• Spiral power line on PCB board
– Complicated design



Power Line Noise Reduction
• Attach the stub to the power line will 

reduce the power supply noise



Stub Theorem
• Input impedance of the transmission 

line of Z0, β, l, and ZL termination :

• When open termination (ZL=infty)

• When the line length is quarter of the 
wavelength (βl=π/2), no loss (R=G=0)



Stub Resistance
• The resistance of the stub degrade the 

noise reduction effect
– Round trip attenuation factor η =e-α2l



Transmission Line Parameters
• Resistance
– Skin effects

• Capacitance
– Parallel plate

for d<w
– Parallel cylinder

for w<d
• Inductance
– c2/εr = 1/LC



Boundary Frequency
• Stub input impedance Zstub∝f –2, f –1.5

– l∝ f –1, w∝ f, δ∝ f –0.5, Zstub=Rl/2
• Capacitor input impedance Zcap∝f -1

• Boundary frequency at Zstub=Zcap



Numerical Analysis
• Raphael(L,C), Fasthenry(R) vs. the model
• d=5um, t=1um, A=1mm2, εr=3.9, ρ=ρCu



Stub Structure
• 0.18um 5M CMOS of company “H”
• For a 2.5GHz operation circuit



Stub and Same-Area Capacitor



Stub Input Impedance vs. Freq



Voltage Swing at Far End
• The voltage swing at far end is bigger



Waveform of Near/Far End



Spectrum of Near/Far End



Stub Design
• Stub length: quarter wavelength of the 

operating frequency
– Stub input impedance has frequency 

dependence
– Operating frequency is the dominant 

component of the power supply noise
• Width: Wider is better for noise reduction
– Smaller resistance, (bigger capacitance)

• Target of this study
– Observe the noise difference between a stub 

and the same space decoupling capacitor



Test Circuit



Equivalent Termination Approx.
loss   reflectivity

Real:  α 1
ETA:   0      ΓlEquiv



ETA Waveforms



Analytical Models using ETA (1)
• The stub input impedance

• The voltage ratio of the near and far end



Analytical Models using ETA (2)
• Time constant for stub impedance change
– At the initial state, stub input impedance is 

the same as the characteristic impedance



Lump or Distributed Element?
• Signal propagation time through a wire, 

compared with the cycle time:
Negligibly small lump element

(R, C ladder)
Comparable        distributed element

(transmission line) 

,   length



Numerical Analysis



Stub Measurement



Background
• Theoretical study predicts that stubs 

can reduce the power supply noise 
better than decoupling capacitor

• Let’s verify the stub noise reduction by 
experiments



Internal Circuit



Power Line Structures
• nothing, capacitor, stub for 2.5GHz, stub 

for 2.5GHz and 5GHz



On-chip Stub Does Not Work
• 0.18um 5ML standard CMOS (5.9mm x 5.9mm)
• The chip is mounted on a Cu board

• Reflection at the bent (length>15mm @2.5GHz)
• Resistance is bigger than the estimated value



VCO characteristics, IR drop
• Intra-chip fluctuation is small



Measured Vdd Waveforms



Measured Vdd Spectrum
• Noise peak at f/2, f/4



VddIO dependece of Vdd Noise
• Substrate/package coupling of Vdd-IO

and Vdd-core



Operating Freq. vs. Noise
• The difference is not clear



Why the Difference is Small?
• Stubs are bent in the chip and reflection 

occurs
• The resistance is much bigger than the 

estimated value
– The provided resistance value seems to be 

a measured sheet resistance at DC
• Package impedance is so big that the 

noise signal cannot come out



Chip Photograph
• 0.18um 5ML CMOS (2.4mm x 2.4mm)



Off-chip Stubs



Schematic



Internal Circuit



Spectrum @1.15GHz Repeat



Spectrum @1.15GHz Random



Freq. Dependence @1.15GHz



Freq. Dependence @1.25GHz



Freq. Dependence @1.45GHz



Freq. Dependence @1.80GHz



Freq. Dependence @1.85GHz



Spectrum of Lower Frequency
• PRBS 2^7-1 characteristics



Waveforms @1.15GHz Random
• Noise amplitude is evaluated by σ



Noise of the fop Component



Total Noise Amplitude (σ )



Spectrum of Lower Frequency
• PRBS 2^7-1 characteristics



Waveforms @1.25GHz Random
• Noise amplitude is evaluated by σ



Total Noise Amplitude (σ )



S parameter – arg(S21)



S parameter – S21



Short Summary
• The on-chip stub does not show the 

power supply reduction effects
–Many bents, large resistance

• The off-chip stubs show clear noise 
reduction
– 90% of the operating frequency component, 

48% total noise is suppressed
– Stub frequency dependence is observed

• Straight on-chip stub will be possible in 
the near future (～4mm@10GHz)



On-chip di/dt Detector



Conventional Current Meas.
• Probe the voltage difference of the R
– Needs numerical calculation

• Probe the magnetic field by pickup coil
– Phase information is lost



Advantage
• On-chip
• di/dt waveform without numerical 

calculation
• Real time
• Feedback di/dt control is possible



Mutual Inductor
• 0.35um, 3ML standard CMOS process

• Large: 200um diameter, 24 turns



Equivalent Circuit
• Extracted by FastHenry



Mutual Inductor
• 0.35um, 3ML standard CMOS process
• FastHenry extracts the equivalent circuit



Internal Circuit as Noise Source



Chip Photograph
• 0.35um 3ML 2P CMOS (4.9mm x 4.9mm)
• The chip is mounted on a Cu board



Waveforms #1



Waveforms #2



Noise Tolerance
• Common mode noise is eliminated
• Vdd noise is suppressed to 18% (by 82%) 



Single or Dual?
• Noise immunity, Sensitivity, Symmetric
• Require two pins, numerical calculation



Equations

• L1=0.5nH, L2=14.4nH, K=0.67, G=0.385,
• Rs=0.78Ω, Rt=50Ω
• Vamp_lin=±0.35V,  di/dt_range=±0.5x109A/s



di/dt Detector Impedance 

• Multi-layer metal, wider line or low 
sensitivity can reduce the voltage drop



Whole Circuit / Meas. Setup



Decoupling Capacitor Effects



Activation, M dependence



Error
• δ=4.49mV, I=5.8mA
• δ=4.38mV, dI/dt=6.3mA/ns



Error
• σ=9.10mV, I=4.46mA
• σ=6.30mV, dI/dt=9.01mA/ns



Feedback di/dt Control



Gilbert Multiplier



Sleep Controller



Chip Layout of di/dt Controller
• 0.15um SOI-CMOS technology



Simulation Waveforms



Short Summary
• On-chip di/dt detector is demonstrated
• It consists of a power supply line, 

underlying spiral inductor, an amplifier
• di/dt waveforms obtained from the di/dt

detector and the resistor agree well
• Current waveform can be calculated by 

integrating the detector output by time
• The di/dt detector circuit detects the 

decoupling capacitor effects as well



Active Noise Cancelling



Frequency Dependence (random)



Overall Circuit
• Change the Gnd line impedance by the 

chip mount



Chip Layout
• 0.35um 3ML 2P CMOS (4.9mm x 4.9mm)
• Chip delivery date will be 10/8



Waveforms (Inductive)



Waveforms (Resistive)



Internal Circuit as Noise Source



Future Works



Conclusion (1/2)
• Chapter 2
– Stubs and decoupling capacitors are compared for 

power supply noise reduction
– Boundary frequency is clarified
– Circuit simulations confirmed the noise reduction
– Stubs will have more advantage over capacitors for 

LSIs with higher operating frequency
• Chapter 3
– The on-chip stub does not show the power supply 

reduction effects because of bents, resistance
– The off-chip stubs show clear noise reduction
– Stub frequency dependence is observed
– Straight on-chip stub integration will be possible in 

the near future



Conclusion (2/2)
• Chapter 4
– On-chip di/dt detector is demonstrated
– di/dt waveforms obtained from the di/dt detector 

and the resistor agree well
– Current waveform can be calculated by integrating 

the detector output by time
• Chapter 5
– Feedforward active noise cancelling is proposed
– di/dt is used for anti-phase signal generation, and 

injected into substrate
– No-body-contact amplifier is used for the probing
– Simulation results show the substrate noise 

cancelling effects for a test circuit
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