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Introduction

 Power supply voltage will decrease

— Noise margin will be reduced

« Power and currents will increase
— Noise amplitude will be increased
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Signal Integrity and di/dt

* Power supply noise : L(di/dt)
 EMI noise : caused by di/dt
 Substrate noise : related to power noise
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Signal Integrity Problems

 Power supply noise
— Timing violation — delay o< 1/(Vdd-Vth)
— Logic error

 Substrate noise

— PLL jitter becomes 10 times bigger by the
substrate noise [20]

 EMI noise
— Operational problems in other devices
— Regulations has been enforced [2]

[20] P. Larsson, JSSC July 2001
[2] vCCI



Improve Signal Integrity

* Reduce the di/dt
« Measure the di/dt

 Use the di/dt for substrate noise
reduction
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Background — di/dt Reduction —

* Decoupling capacitor
— Area penalty, parasitic inductance

« Attach the stub to the power line will
reduce the power supply noise
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Stub and Capacitor Impedance
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Boundary Frequency

« Stub input impedance Zstub ocf 2, f-1-3
« Capacitor input impedance Zcap ocf -
 Boundary frequency at Zstub=Zcap
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Numerical Analysis

 Raphael(L,C), Fasthenry(R) vs. the model
o d=5um, t=1um, A=1mm2, ¢r= 39, p pCu

|Zstub/Zcap|
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Circuit Simulation
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Power Supply Noise Waveform
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Power Supply Noise Spectrum
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Short Summary

Stubs and capacitors are compared for power
supply noise reduction

Boundary frequency above which stubs are
more effective than decoupling capacitors is
clarified

Circuit simulation shows that the stub
reduces 37% and 18% of the power supply
noise compared with the nothing and the
capacitor case.

It is theoretically shown that stubs will have
more advantage over capacitors for LSls with
higher operating frequency
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Off-chip Stubs




On-board Stubs
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Schematic
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Internal Circuit
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Noise Amplitude [V]
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Noise Amplitude [V]
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Noise Amplitude [V]
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Noise Amplitude [V]
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Noise of the fop Component

Noise Amp. of fop Component [V]
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Current Measurement
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Normalized Current

Current Distribution
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Possibility of On-chip Stub
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Short Summary

« Stub noise reduction is experimented

* The on-board stubs show clear noise
reduction

— 87%, 72% of the operating frequency
component at 1.25G, 1.95GHz is suppressed

— Stub frequency dependence is observed

* On-chip stub integration will be possible
in the near future
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Background

» di/dt is becoming a critical issue
 Need to measure the di/dt

/_EMI noise L(di/dt) noise
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Block Diagram

* L2 picks up the di/dt, induce the voltage

« Amplifier amplifies/output the voltage
Pros: on-chip, real time, high-bandwidth,
no numerical calculation

i & J | Z0=50[Q]
L 21" > H
: d :

internal
+ | circuit elfed

| : oscillo

,,L»L-‘ scope




Improved Mutual Inductor
« Straight layout on the primary part

internal
circuit
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Improved Mutual Inductor

Pros: L1:0.5nH — 0.26nH, R1:1.56Q2 — 0.14Q2
Cons: M :1.80nH — 0.92nH (use large amp.)

internal internal
circuit circuit
o/




Amplifier/Output buffer

 Gain: 0.76, fcut-off: 3.3GHz
Output linearly: +0 35V (simulation)

Rb MP2 Z0=50[Q]
10kQ 10kQ blocking
in capacitor
EIMN1 MN%:"J 50[Q]
oscillo
scope




Bias Points of the Amplifier
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Internal Circuit as Noise Source
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Whole Circuit / Meas. Setup
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Chip Photograph

* 0.35um 3ML 2P CMOS

— Chip area : 3.0mm x 1.8mm.
— di/dt dg_tector . 340um_ X 280um
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Waveform #2
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Short Summary

On-chip di/dt detector is demonstrated

It consists of a power supply line,
underlying spiral inductor, an amplifier
di/dt waveforms obtained from the di/dt
detector and the resistor agree well

Current waveform can be calculated by
integrating the detector output by time

Improved mutual inductor reduces the
voltage drop
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Background — Substrate Noise

* Guard ring does not work well because
of the parasitic impedance

 Substrate noise is related to Gnd noise
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F.F. Active Noise Cancelling

di/dt detector makes anti-phase signal
no feedback - high bandwidth

Vdd D | (0'0'0\ Vdd_Canceller
-AM(di/dt)
di/dt
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digital analog
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Noise Canceller

* Anti-phase current should be injected

 Ccis large so as to adjust the phase of

the original noise and injected currents
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Noise Probing for Verification

 Differential amplifier connected to the
substrate and the external Gnd

* No body contact for NMOS (gm/gbs=6.0)
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Internal Circuit as Noise Source
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Chip Photograph & Floor Plan
* 0.35um 3ML 2P CMOS (3 Omm x 1 8mm)




Mount

1P

Ch

* The test chip is mounted on a Cu board




Waveform (Random@500MHz)

2.5 | | | |

Active cancel OFF
Active cancel ON
CLK/2

AN

Time [ns]

2.0

1.5

Voltage [V]

1.0

0.5

0.0 o
25



Active Cancel ON/OFF
 ON, OFF means Vdd_Canceller=3.3V, 0V
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Waveform (Repeat@500MHz)
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Frequency Dependence (repeat)
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Noise Amplitude Change
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Phasor of the Substrate Noise

* Phase of the injected current is —n/2

* 54% noise reduction would be achieved
by optimizing the amplifier design
Vdd_canceller=0V

0.4

Vdd_canceller=3.3V




In-phase Current Injection

* In-phase injection increase the noise

Vdd_D | (0'0'0‘\ Vdd_Canceller
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In-phase Current Injection
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* This result supports our model



Short Summary

Feedforward active substrate noise
cancelling technique is demonstrated

A di/dt detector generates anti-phase
signals, and injected into the substrate

Measurement results show that 17% to
34% of the substrate noise reduction is
achieved from 100MHz to 600MHz range

Optimized injector design will enhance
the noise suppression ratio up to 56%
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Conclusions

Stubs and capacitors are compared for
power supply noise reduction

— Boundary frequency is clarified

— Stubs have advantage for high-frequency
Clear supply noise reduction effects
were observed with on-board stubs
On-chip di/dt detector was demonstrated
— on-chip and real time di/dt measurement
Feedforward active substrate noise
cancelling was demonstrated

— Use the di/dt detector
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Future Works (1/4)

* Measure the substrate noise cancelling
circuit (chip delivery 10/8)

Vdd_D R ITIRTE T FTR I TR TN ITIT
Vdd_canceller SR %@%Rﬁmﬁw-ﬁ- St

na|1n a ._i = I_____! !\':_.' I:':_.':_:_-' It &_.i':_.":_!.. L ; ,k‘::. o
di/dt - b = IR -

digital analog
circuit circuit

Gnd_D

L(di/dt)

L

§1°°5¢

-—— - - -

N




Future Works (2/4)

 Measure an improved di/dt detector
Pros: L1:0.5nH — 0.26nH, R1:1.56Q — 0.25Q
Cons: M :1.80nH — 0.92nH

— Depend on the delivery date (10/87?77?)
R |
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Future Works (3/4)

+ Off-chip stub vs off-chip capacitor

— Write stub and capacitor patterns with the
same area on PCB




Future Works (4/4)

« Simulate a feedback di/dt control system

Vdd-i +
DC/DC

Vref
. Gilbert
— { mlllltiﬁlier C |

comparator [~

internal
circuit
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Power Supply Noise

* As the Vdd decrease, the noise margin
Is reduced
— Timing violation — delay o 1/(Vdd-Vth)
— Logic error
« L(di/dt)+RI causes the noise
— L(di/dt) is dominant in high-speed LSIs
— Decoupling capacitor reduce the di/dt

» Requires more die area for on-chip capacitor

» Parasitic inductance disturbs for off-chip
capacitor



Power Supply Noise

* As the Vdd decrease, the noise margin
Is reduced

— Timing violation — delay o 1/(Vdd-Vth)
— Logic error

« L(di/dt)+RI causes the noise
— L(di/dt) is dominant in high-speed LSIs



Substrate Noise

 PLL jitter becomes 10 times bigger by
the substrate noise [16]

« Coupling from power supply noise is the
main source > di/dt is important

o mn SEEN-] an mi

Gnd_D gp [N N| J) N N ) Gnd_A

T

Digital Analog
Circuits Circuits
p-substrate

[16] P. Larsson, JSSC July 2001




EMI noise

EMI radiation can cause operational
problems In other devices

EMI radiation occurs from cables,
connectors, PBC, package ...

Ultimate noise source is di/dt caused by
gate switching in LSIs

EMI radiation is caused by di/dt, not by
voltage perturbation



Theoretical Study of
Stubs vs Capacitors



Background

 Decoupling capacitor
— Area penalty ‘ /000

V
_ParaSitiC é er—
mductance A000% Clrcmt
gnd

package

« Semi-asynchronous architecture
— Complicated design

« Spiral power line on PCB board
— Complicated design



Power Line Noise Reduction

« Attach the stub to the power line will
reduce the power supply noise

/A0

Vdd —stub

000

| ! 7 gnd
ackage

P

Internal
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Stub Theorem

* Input impedance of the transmission
line of 20, B, I, and ZL termination :

ZL cosBl + Zosinp|

Yo L 06 I
° Zo0cosBl + ZL sinBl

 When open termination (ZL=infty)
cosp/
Jsinpl

 When the line length is quarter of the
wavelength (Bl1=n/2), no loss (R=G=0)
Zstub =0

Zstub = Z0



Stub Resistance

* The resistance of the stub degrade the
noise reduction effect

— Round trip attenuation factor r =e-2?

Signal Amplitude
|
|
-

Stub X Direction



Transmission Line Parameters

- Resistance @

: _ |-2p

— Skin effects 8=/
« Capacitance © 5
— Parallel plate 77—

for d<w
— Parallel cylinder

for w<d @ @ ®)

* Inductance ld
—c?le, =1/LC @ _

- -
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Boundary Frequency

« Stub input impedance Zstub ocf 2, f-1-3
—Jocf-1, woe f, Soc f-05, Zstub=RI/2

« Capacitor input impedance Zcap ocf -

 Boundary frequency at Zstub=Zcap

o _mc2eop B _ 16pJereoc . . _16d
8td A T
3
3 S 16p.JEr €Eg C and t::-ﬂ c.Je_,-eopA
A [ 64ad2
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25642 A

T

3
t3>16p ErgpcC and H':t c.Je_,-eopA
A T 64dz2



Numerical Analysis

 Raphael(L,C), Fasthenry(R) vs. the model
o d=5um, t=1um, A=1mm2, r=3.9, p=pCu

|Zstub/Zcap|

- | ——dist=0.5um
102L| ——dist=50um

E | —v—thick=0.1um

- | —+—thick=10um

[ | —e—area=0.1mm"2
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Stub Structure

* 0.18um S5M CMOS of company “H”
* For a 2.5GHz operation circuit

15.323[mm] 7.662[mm]
for 2.5[GHz] for 5.0[GHZz]

M5 (vdd) ? g
M4 (vdd) |/

40[um] 40[um]

l/M1 (gnd) I%




Stub and Same-Area Capacitor

GND: M1 stub for 2.5GHz: M4 and M5, w=40 length=15.323mm
I/ 27777772777 /7. |
vdd
ANUONONONONONUONIONIONIONIONIIONOINIONIINISISININNNANGN
stub for 5GHz: M4 and M5, w=40um, length=7.662mm
7777777777777
vdd

same area decoupling capacitor



Stub Input Impedance vs. Freq
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Voltage Swing at Far End

* The voltage swing at far end is bigger
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Waveform of Near/Far End
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Spectrum of Near/Far End
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Stub Design

« Stub length: quarter wavelength of the
operating frequency

— Stub input impedance has frequency
dependence

— Operating frequency is the dominant
component of the power supply noise

* Width: Wider is better for noise reduction
— Smaller resistance, (bigger capacitance)

* Target of this study

— Observe the noise difference between a stub
and the same space decoupling capacitor



Test Circuit

nothing stub
O

idealVdd L=102nH/m, C=407pF/m, R=400W/m
w SRR EEREEET for 2.56GHz, I=15.323mm
0.5nH “lo.4pF

X2 x4 X7 x 10 x10 x12




Equivalent Termination Approx.
loss reflectivity

Real: o 1 real (AW, W)
ETA: 0 T " T——— —}

IEquiv = n=e%2/

ZIEquiv = ZO0Ideal

Stub X Direction



Voltage [V]

ETA Waveforms

21 i i
— LCR ladder
T element/ETA |
2.0 — W element
1.9
1.8 -
1.7 -
| |
1'2 22 24

Time [ns]

26



Analytical Models using ETA (1)

* The stub input impedance

L 1-M
SHPEqE C 1+M

* The voltage ratio of the near and far end

Vtar 1+M

Vnear 7-M




Analytical Models using ETA (2)

 Time constant for stub impedance change

— At the initial state, stub input impedance is
the same as the characteristic impedance

R+ joL . ...
G+ jaC (initial)
1
Zstub = i - 2flog|nIs|

jslnBl \lgv n (steady)



Lump or Distributed Element?

« Signal propagation time through a wire,
compared with the cycle time:

Negligibly small 2 lump element
(R, C ladder)
Comparable - distributed element
(transmission line)

_ | B+ joL
ZO'JGH@C , length

Be= - j(R+ joLXG+ joC) = B,-j




Abs. of Impedance [Q]

Numerical Analysis

Frequency [GHZz]



Stub Measurement



Background

* Theoretical study predicts that stubs
can reduce the power supply noise
better than decoupling capacitor

* Let’s verify the stub noise reduction by
experiments



Internal Circuit
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Power Line Structures

* nothing, capacitor, stub for 2.5GHz, stub
for 2.5GHz and 5GHz

externalVdd

-? package ,------- o Eh'-p ----------------------------------
1
" : stub for 2.5GHz
package , nothing '
1 o— for 2.5GHz, w=40um, I=15.323m‘mj :

: virtualVdd L=102nH/m, C=407pF/m, R=500Q/m !

: capacitor stub for 2.5GHz and 5GHz :

777 I [ internal ] “17.04pF for 2.6GHz, w=40um, I=15.323mm)] |
1

circuit
73;' for 5GHz, w=40uml=7.662mm

—————————————————————————————————————————————

oscillo




On-chip Stub Does Not Work

* 0.18um SML standard CMOS (5.9mm x 5.9mm)
* The chip is mounted ona Cub

f—:nf*_}rsl':,skﬁ.a‘ﬁ o, ".ﬁ! ;-_a.h LR,
. f ; — =
N, I =

& | | decoupling
= | | capacitor

7 Vil
nothing | | &t
=l . s

stubs for 2.5GHz, 5GHz

L | - ik =
s ) % q
Lo ¥, |3 P
" I - el \ _’ ¥
(11} h r L ™
B [ e ] \ e
Al G | # H \ \'%
AR

. Refeci t e bent (length>15mm @2.5GHz)
* Resistance is bigger than the estimated value

Q& i LT itk



VCO characteristics, IR drop

* Intra-chip fluctuation is small
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Measured Vdd Waveforms

Internal Vdd Voltage [V]

Time [ns]




Noise Amplitude [V]

Measured Vdd Spectrum
* Noise peak at /2, f/4

0.15

o
-t
o
I

0.05

0.00
0.00

—— nothing
—=m— capacitor
—e— stub

operating frequency

Frequency [GHZ]




VddIO dependece of Vdd Noise

* Substrate/package coupling of Vdd-IO
and Vdd-core

o N B S B S B —
| — = Vdd_l0=2.0V | _
~ —&— Vdd_l0=2.5V
@ —e— Vdd_lO=3.0V
S  0.08|- -
% operating frequency
< 0.06
(<))
(/2]
o
< 0.04
0.02
0.00
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Frequency [GHZz]



Operating Freq. vs. Noise

* The difference is not clear

> 0.7 _ . | . |

o L —e— Nothing

g P —=— Capacitor
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L I

o

2 0.06 : 2 5
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Why the Difference is Small?

« Stubs are bent in the chip and reflection
occurs

* The resistance is much bigger than the
estimated value

— The provided resistance value seems to be
a measured sheet resistance at DC

 Package impedance is so big that the
noise signhal cannot come out



Chip Photograph
* 0.18um SML CMOS (2.4mm x 2.4mm)
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Off-chip Stubs




(lead )

Lwire
Vad H()(

I

Schematic
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nothing '
50[Q]
?+—© stubs
spectrum
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Internal Circuit

DFF | -

DFF DFF

DFF DFF

-

o\

MO

Vctrl

doyjpuey 73S —p-%

oFochh— 3

CZ/
% % | | %
% % : z x10 x1 2

10

1/2DIV g
x4 X x9

outbuf outbuf
LK/3 PRBS
VCO [ 1/320|v—|§ 2 for trigagr




Spectrum @1.15GHz Repeat
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Spectrum @1.15GHz Random
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—— With Stubs
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Freq. Dependence @1.15GHz

0.20 .
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- With Stubs
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Freq. Dependence @1.25GHz

0.20 .
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Freq. Dependence @1.45GHz
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Freq. Dependence @1.80GHz

0.20 , ,

- W/0 Stubs
— With Stubs
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Freq. Dependence @1.85GHz
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Spectrum of Lower Frequency
PRBS 227-1 characteristics
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Waveforms @1.15GHz Random

* Noise amplitude is evaluated by o

3.6 .
| — wio Stubs (c=0.178) 4 ”
3.4 — with Stubs (o =0. 093) 8%
' | | I”f m[
s 2|l HW
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Noise of the fop Component

0.3
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Noise Amplitude (c) [V]

Total Noise Amplitude (o)
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Spectrum of Lower Frequency
 PRBS 227-1 characteristics
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Waveforms @1.25GHz Random

* Noise amplitude is evaluated by o
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Std. Deviation of the Vdd Noise [V]

Total Noise Amplitude (o)
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S parameter — arg(S21)
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A
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Short Summary

 The on-chip stub does not show the
power supply reduction effects

— Many bents, large resistance
* The off-chip stubs show clear noise
reduction

— 90% of the operating frequency component,
48% total noise is suppressed

— Stub frequency dependence is observed

« Straight on-chip stub will be possible in
the near future (~4mm@10GHz)



On-chip di/dt Detector



Conventional Current Meas.

* Probe the voltage difference of the R
— Needs numerical calculation

* Probe the magnetic field by pickup coil
— Phase information is lost

spectrum
't / / '?' I\QO.OJ analyzer
|

1€

LSI LSI




Advantage

On-chip

di/dt waveform without numerical
calculation

Real time
Feedback di/dt control is possible



Mutual Inductor

* 0.35um, 3ML standard CMOS process

intern
circu

10turns, /,,,

| 2um spaciag
substrate
N 10Q2.cm

« Large: 200um diameter, 24 turns




Equivalent Circuit
 Extracted by FastHenry

internal :
CircUIt | 3 *tccccccccccccccasssssssssssssmssses?® -
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Mutual Inductor

* 0.35um, 3ML standard CMOS process
* FastHenry extracts the equivalent circuit

internal
circuit

O

/ NS
N\ L'lm AP ‘
o

10turns, 1M

N\ internal
\\\\ 2um width, > circuit
\\\2um spacing
\\\ substrate 77
\\\. 10€2.cm




Internal Circuit as Noise Source
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Chip Photograph

* 0.35um 3ML 2P CMOS (4.9mm x 4.9mm)
* The chip is mounted on a Cu board
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Waveforms #1
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Detector Output [V] Rs Volt. Diff. [V]

Waveforms #2
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Noise Tolerance

« Common mode noise is eliminated
* Vdd noise is suppressed to 18% (by 82%)

AV AV -?—

DAVI2 -

AV/2

Av/2 |

I

50[€]

R_MP2

(~160Q)

C_block

- R_MN2 %-—°
(~120Q)
50[Q]



Single or Dual?

Noise immunity, Sensitivity, Symmetric
Require two pins, numerical calculation

MP2 Z0=50[Q]

MP1
Rb
inp
o 0—||:MN1 MN2:"-




Equations

dl, R
V K L’LE d’ %1_(14._?)\/32:}:.’8[1
vdfo‘tOuf — G‘/z — GKJ L-,LzF;
adl 1
F;= GK.ILL Viigtout = Avadiar Vaidtout
12
dI - A v
A g™ GK—J?L;_: Ot range v2didt ¥amp_outRange_in
dl
I, = A zqidt IvdHtOut dt +C dtras = A zdidgt Vaidtout res

+ L1=0.5nH, L2=14.4nH, K=0.67, G=0.385,
. Rs=0.78Q), Rt=50Q
. Vamp_lin=+0.35V, di/dt_range==+0.5x10°A/s



di/dt Detector Impedance
- s1 Rs S2 didtOut

H0( M I:Iamp.l_
int.}- CLK/2

0.3
0.2

0.1

Voltage [V]

0.0

'0.1 | 1 1
30 40 50 60 70
Time [ns]

* Multi-layer metal, wider line or low
sensitivity can reduce the voltage drop




Whole Circuit / Meas. Setup
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Decoupling Capacitor Effects
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Error

¢ 5=4.49mV, |=5.8mA
e 0=4. 38mV dl/dt=6.3mA/ns

c 019 (C)— Vs1-(1+Rs/Rt)Vs2] 0.182 _
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Detector Output [V] Rs Volt. Diff. [V]

Error

c=9.10mV, I=4.46mA
0=6.30mV, di/dt=9.01mA/ns
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Feedback di/dt Control

Vvdd -?—

di/dt

Gilbert
multiplier

internal
circuit
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sleep

control
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Sleep Controller
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Chip Layout of di/dt Controller
* 0.15um SOI-CMOS technology
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Simulation Waveforms

Volt. [V]
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Short Summary

On-chip di/dt detector is demonstrated

It consists of a power supply line,
underlying spiral inductor, an amplifier
di/dt waveforms obtained from the di/dt
detector and the resistor agree well

Current waveform can be calculated by
integrating the detector output by time

The di/dt detector circuit detects the
decoupling capacitor effects as well



Active Noise Cancelling



Frequency Dependence (random)

Voltage [V]
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Active cancel ON
Suppression Ratio

— lower peak volta

suppression ratio
24% @500MHz

31%@370MHz
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Overall Circuit

* Change the Gnd line impedance by the
chip mount

Vdd_internal -% Vdd_canceller
di/dt Vdd_prober
CLK/32 O:)@ Int I : e %@1
oscillo
E- scope
e " 'a- “
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e 1




Chip Layout

* 0.35um 3ML 2P CMOS (4.9mm x 4.9mm)
« Chip delivery date will be 10/8
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Voltage [V]

Waveforms (Inductive)
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Voltage [V]

Waveforms (Resistive)
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Internal Circuit as Noise Source
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Future Works



Conclusion (1/2)
 Chapter 2

— Stubs and decoupling capacitors are compared for
power supply noise reduction

— Boundary frequency is clarified
— Circuit simulations confirmed the noise reduction

— Stubs will have more advantage over capacitors for
LSIs with higher operating frequency

 Chapter 3

— The on-chip stub does not show the power supply
reduction effects because of bents, resistance

— The off-chip stubs show clear noise reduction
— Stub frequency dependence is observed

— Straight on-chip stub integration will be possible in
the near future




Conclusion (2/2)
 Chapter 4

— On-chip di/dt detector is demonstrated

— di/dt waveforms obtained from the di/dt detector
and the resistor agree well

— Current waveform can be calculated by integrating
the detector output by time

 Chapter 5

— Feedforward active noise cancelling is proposed

— di/dt is used for anti-phase signal generation, and
injected into substrate

— No-body-contact amplifier is used for the probing

— Simulation results show the substrate noise
cancelling effects for a test circuit
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