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Abstract

We present a pixel-level color image sensor with efficient am-
bient light suppression using a modulated RGB flashlight to
support a recognition system. Bidirectional photo integrators
realize in-pixel demodulation of a projected flashlight with sup-
pressing an ambient light at short intervals during exposure
time to avoid saturation from ambient illumination. Every pixel
has a capability of depth and color capture. A prototype chip
has been designed using 0.35µm CMOS process and success-
fully tested.
Keyword: CMOS image sensor, modulated flashlight, color imag-
ing, time-of-flight range finding, recognition system.

Introduction

In recent years a monitoring/recognition system becomes im-
portant for a security system, an intelligent transportation sys-
tem (ITS), factory automation, robotics and so on. Object ex-
traction from a captured scene is important for such a recog-
nition system. Color information is also useful to identify a
target object. However object extraction requires huge compu-
tational effort in general, and color information changes with
ambient illumination. In this paper, we propose a CMOS im-
age sensor supporting image processings of object extraction
and color capture for a recognition system as shown in Fig.1.
Target objects are desired to be extracted by flashlight decay or
time-of-flight (TOF) range finding, which is called a depth-key
technique[1]. Moreover ambient light suppression is important
since a recognition system requires color information of a tar-
get object itself.

Some image sensors with demodulation have been presented
for signal detection suppressing a constant light [2]–[4]. The
conventional techniques [2, 3] have two photo integrators. One
accumulates a signal light and an ambient light together, and
the other accumulates only an ambient light. Therefore its
dynamic range is limited by the ambient light intensity. The
logarithmic-response position sensor [4] expands the dynamic
range due to adaptive background suppression. The signal gain,
however, changes with the incident light intensity, so it is not
suitable for capturing a scene image.

The present photo detector has bidirectional photo integra-
tors for in-pixel demodulation, which accumulate a signal light
with an ambient light and then subtract the ambient light from
the total level at short intervals during demodulation. It con-
tributes to avoid saturation from ambient illumination for the
applicability to non-ideal illumination conditions. Every pixel
provides color information without false color and intensity
loss of color filters by using a modulated RGB flashlight. The
flashlight imaging also supports object extraction using flash-
light decay. Moreover the demodulation function has a possi-
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Fig. 2 System Configuration Using Modulated Flashlight.

bility of TOF range finding as presented in [5, 6] to achieve
more efficient object extraction.

System Configuration and Sensing Scheme

Fig.2 shows a system configuration using a modulated RGB
flashlight. The flashlight is modulated in RGB respectively by
φR, φG andφB, and projected on a target scene together. A
photo detector receives the modulated lightsER, EG and EB

with an ambient lightEbg. A photo currentIpd is generated in
proportion to the incident intensityEtotal as follows:

Ipd ∝ Etotal =



ER + Ebg i f t = nT ∼ nT + ∆T,
EG + Ebg i f t = nT + ∆T ∼ nT + 2∆T,
EB + Ebg i f t = nT + 2∆T ∼ nT + 3∆T,
Ebg otherwise,

(1)

whereT is cycle time of modulation,∆T is a pulse width of
each flashlight, andn is the number of cycles in exposure time.
Ipd is accumulated in each integrator synchronized withφR, φG

andφB respectively. Then all integrators subtractEbg from the
total level in a modulation cycleT . The short-interval sub-
traction contributes to suppress background illumination with
keeping the dynamic range.
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Fig. 3 Pixel Circuit Configuration and Layout in 0.35µm Process.

In the conventional demodulation sensor [2, 3], the signal
level Vsig is calculated from the accumulation resultsVsig+bg

andVbg after an exposure period.

Vsig = Vsig+bg − Vbg (2)

=

n∑
i=0

(Isig + Ibg) · ∆T

Cpd
−

n∑
i=0

Ibg · ∆T

Cpd
(3)

whereCpd is a parasitic capacitance of a photo diode.Isig and
Ibg are photo currents generated by a modulated flashlight and
an ambient light respectively. Therefore the dynamic range of
[2, 3] is limited by a saturation levelVsat as follows:

Vsig+bg < Vsat. (4)

On the other hand, the present image sensor suppresses an
ambient light at short intervals during an exposure period. The
signal levelVsig is provided directly from a pixel output as fol-
lows:

Vsig =

n∑
i=0

(
(Isig + Ibg) · ∆T

Cpd
− Ibg · ∆T

Cpd

)
. (5)

Thus the dynamic range is given by

Vsig < Vsat. (6)

In the present sensing scheme, a short interval time of demod-
ulation makes the dynamic range higher. The fourth integrator
providesVO as the offset level to cancel asymmetry of bidi-
rectional integration. The color sensing has no intensity loss
caused by color filters. Furthermore a reconstructed image has
no false color because of pixel-level color imaging.

Pixel Circuit Configuration

Fig.3 shows a pixel circuit configuration and layout in 0.35µm
process. It consists of a photo diode (PD), a fully differential
amplifier with gain= 1, four integrators (Σi) with a demodula-
tion function, and four source follower circuits. The pixel size
is 33.0µm× 33.0µm with 12.4% fill factor in 0.35µm CMOS
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Fig. 5 Simulation Waveforms of In-Pixel Demodulation.

process. Fig.4 shows a timing diagram of the pixel circuit. In
the reset period, all integrators are initialized byφrst, and also
Vpd at a photo diode is reset byφpd. In the first∆T , the photo
detector accumulatesER with Ebg in Σ1 since a projected flash-
light has a red lightER. Then the photo detector accumulates
EG andEB with Ebg in Σ2 andΣ3 in the second and third∆T
respectively afterVpd has been reset again. FinallyEbg is accu-
mulated inΣ4 and subtracted from all integrators in the fourth
∆T . The modulation cycleT is iterated in exposure time.

Fig.5 shows simulation waveforms of the in-pixel demodula-
tion. In the simulation condition, a photo currentIbg generated
by an ambient lightEbg is set to 200 nA. Photo currentsIR, IG

and IB generated by a modulated RGB flashlight are set to 40
nA, 80 nA, and 120 nA respectively. A parasitic capacitance
Cpd of a photo diode is 73 fF. A sampling capacitanceCs is 12
fF. An integration capacitanceCi is 17 fF.∆T is set to 0.1 ms.
A modulation cycleT of 0.4 ms is iterated 25 times in exposure
time of 10 ms. The photo currents by a modulated flashlight are
accumulated as|VR−VO|, |VG−VO| and|VB−VO|with suppress-
ing an ambient lightEbg as shown by (a)–(c) in Fig.5, whereVO

representsEbg − Ebg as an offset level of bidirectional integra-
tion. Therefore the present sensing scheme can avoid satura-
tion from ambient light intensityEbg as shown in eqn.(5). In
the conventional sensing as shown by (e) in Fig.5, the signal
level can be saturated since the integrator accumulatesEB and
Ebg together without suppressingEbg in an exposure period as
shown in eqn.(3).
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Table 1 Specifications of the Designed Sensor.
Process 0.35µm CMOS 3-metal 2-poly-Si
Die size 4.9 mm× 4.9 mm
# of pixels 64× 64 pixels
Pixel size 33.0µm × 33.0µm
Pixel config. 1 PD, 57 FETs and 5 capacitors
Fill factor 12.4 %

Chip Implementation

We have designed and fabricated a 64× 64 image sensor us-
ing the present sensing scheme and circuits in 0.35µm CMOS
process1. Fig.6 and Fig.7 show the chip microphotograph and
its components. The sensor consists of a 64× 64 pixel array,
a row select decoder, control signal drivers, a correlation dou-
ble sampling (CDS) circuit, an offset canceller, an 8-bit ADC,
and a sensor controller. Specifications of the designed sensor
are shown in Table 1. A CDS circuit suppresses a fixed pattern
noise from the output voltagesVRo, VGo, VBo andVOo respec-
tively. And then the offset canceller, which is shown in Fig.8,
subtracts a demodulation offset levelVOo from the other output
voltages. The fabricated chip also has a charge-distributed 8-
bit ADC as shown in Fig.9. All components are operated by an
on-chip sensor controller.

Measurement Results

A. Efficient Ambient Light Suppression
Fig.10 shows measurement results of a differential output volt-
age|VRo − VOo| as a function of modulated light intensityER.
Red LEDs of 630 nm wavelength project a modulated light and
a constant light simultaneously on the sensor plane directly.

1The sensor in this study has been fabricated through VLSI Design and
Education Center (VDEC), University of Tokyo in collaboration with Rohm
Corp. and Toppan Printing Corp.
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ventional demodulation without efficient ambient light suppression.

The modulated light has a modulation cycleT of 0.2 ms and
a pulse width∆T of 0.05 ms. The exposure time is 10 ms.
The noise level of the present sensor is 3.4 mVrms, which is
measured by|VRo − VOo| under a constant light. As shown by
(a)–(c) in Fig.10, the present sensing scheme has high linearity
regardless of an ambient lightEbg. Moreover it can avoid satu-
ration from an ambient light efficiently in comparison with the
conventional demodulation sensing scheme (d) in Fig.10.

Fig.11 shows a saturation level of modulated light inten-
sity ER versus ambient light intensityEbg. The conventional
scheme is not suitable for various conditions since the satura-
tion level is limited by the total level ofER andEbg as shown
by (b) in Fig.11. On the other hand, the saturation level of the
present scheme is not limited by the total intensity as shown
in Fig.11 though it is slightly affected by an offset levelVO

caused by asymmetry of bidirectional integration. Therefore
the present sensor keeps high SNR and has a capability of var-
ious measurement situations.

B. Pixel-Level Color Imaging
We have demonstrated color imaging using the present image
sensor and a modulated RGB flash light as shown in Fig.12.
A prototype flashlight has 8 red LEDs, 8 green LEDs and 16
blue LEDs, whose wavelengths are 630 nm, 520 nm and 470
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Fig. 12 Measurement Results of Color Imaging with Ambient Light
Suppression.

nm. Total power consumption is 474 mW. The flashlight and
an ambient light of a fluorescent lamp provide around 500 lux
and 120 lux on a target scene at a distance of 30 cm from the
sensor. Color image reconstruction requires each modulated
light intensity, each distribution on a target scene, and spectral-
response characteristics of the sensor. In this measurement,
we acquired sensitivity of all pixels for the prototype flashlight
projector using a white board. It can provide calibration param-
eters for non-uniformity of a modulated light, spectral-response
characteristics and sensitivity fluctuation caused by each inte-
gration capacitanceCi. Fig.12(c) is a color image of a target
scene (b) reconstructed from the sensor outputs (d)–(f). It has
color information corresponding to 64× 64 × 3 pixels of a
standard color imager since every pixel provides RGB colors.

C. Time-of-Flight Range Finding
Fig.13 shows a timing diagram and an expected output voltage
of TOF range finding. A pulsed light is reflected from a target
object with a delay timeTd. The delayTd resulting from a
target distanceLo changes demodulation outputsV1 and V2.
The target distanceLo is given by

Lo =
cTp

2

(
1− V1

V1 + V2

)
, (7)

wherec is a light velocity andTp is a pulse width. Fig.14
shows measurement results of TOF range finding using a 5-
MHz pulsed laser beam. It has 10 mW and 665 nm wavelength.
The measured target range is between 60 cm and 120 cm from
the sensor. The measured range error is within±15 cm. A
standard deviation of error is 7.3 cm.
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Conclusions

A pixel-level color image sensor with efficient ambient light
suppression has been presented. Bidirectional photo integra-
tors realize in-pixel demodulation of a modulated RGB flash-
light with suppressing an ambient light at short intervals dur-
ing exposure time. Therefore it avoids saturation from ambient
illumination to realize the applicability to non-ideal illumina-
tion conditions. Every pixel provides color information with-
out false color and intensity loss of color filters. The flash-
light imaging also supports object extraction based on flash-
light decay. We have demonstrated the efficient ambient light
suppression and the pixel-level color imaging using a 64× 64
prototype sensor in 0.35µm CMOS process. Moreover TOF
range finding with±15 cm range accuracy has been performed
to achieve more efficient object extraction. The present image
sensor supports object extraction and identifiable color caputre
for a recognition system in various measurement situations.
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